Applied Data Science & Analytics / Eolaíocht Sonraí Fheidhmeach ┐ Anailísíocht

The minimum entry requirement is a 2nd Class Honours Grade 2 (GPA 2.5 or equivalent), in a NFQ level 8 Degree in Computing, Science, Engineering, Business with IT, or equivalent.

Applicants not meeting this entry requirement may be admitted to the programme on the basis of extensive practical and/or professional experience which can be assessed by the Institute’s APL/APEL process.

Students progressing through the Higher Diploma in Science in Computing (BN509) who wish to enter the M.Sc. in Computing must attain a 2nd Class Honours Grade 2 (GPA 2.5) on the course.

In the event of a student not attaining this standard level , students must achieve an acceptable standard for progression by other means approved by QQI.

The acceptance of candidates with third class honours degrees and appropriate work experience and industrial certification on this course will be allowed provided there is evidence that the candidate can cope with the learning objectives of the course.

Candidates may be interviewed to assess their suitability to undertake the level of work required and to assess their commitment to succeding on the MSc in Computing Programme.

Data analytics, the analysis of both large and small data sets, has become a fundamental source of valuable information derived from ever increasing volumes of structured and unstructured data. Data analytics applications cover a variety of organizations and industries, and remains mission critical for businesses as it turns information into an asset for deriving insight and making decisions. This reflects the need for companies to do business more smartly, enabled by business intelligence.

Increased user activity has resulted in significant growth in data, both structured and unstructured. The value of this data is dependent on appropriate analysis of the data, and the subsequent application of analysis results. Consequently, data analytics has become a fundamental element for both private sector and public sector organisations that wish to compete through ever-evolving technology, productivity advancement, and innovation in research and development.

Globally, there is a reported shortage of data analytics talent particularly individuals with the required ‘deep analytical’ skills. In Ireland, government policy in recent years has consistently identified data analytics as a key growth area with a medium-term goal to become a leading country in Europe for big data and analytics.

The MSc in Computing programme is of particular value to holders of a primary degree in computing, IT, or equivalent, working as IT professionals. It is also of value to individuals with a computing degree background who wish to develop their career towards working within a research-oriented environment at a postgraduate level.

Graduates from this programme are equipped for employment in sectors where data analysis is a critical component, such as the insurance, retail, pharmaceutical, biotechnology, business, travel, telecommunication, government, and intelligence sectors.

Following successful completion of the MSc, graduates have taken up data analytics jobs with Accenture, SAP, FBD Insurance, Deutsche Bank, IBM, Eircom, Emirate airlines and PayPal, while one graduate has started his own analytics consultancy firm. Many students registered on this stream were already working in data analytics, or aim to start a data analytics function with their current employer.

Former students come from a variety of industry sectors and companies including:

  • Ericsson
  • IBM
  • Microsoft
  • PayPal
  • Intel
  • O2
  • Vodafone
  • Aer Lingus
  • Ryanair
  • Dublin Airport Authority
  • GlaxoSmithKline
  • Mallon Technologies
  • Bank of Scotland
  • Arvato Finance Solutions
  • Samba Financial Group (India)
  • Sky Ireland
  • VHI Healthcare
  • United Healthcare Group
  • Nathean Technologies
  • Compass Informatics 
  • MTT

Year 1 Semester 1

  • Business Intelligence
  • Data Mining Algorithms

Year 1 Semester 2

  • Data Pre-processing and Exploration
  • Data Science Applications

Year 2 Semester 3

Electives :

  • Text Mining and Web Content Mining
  • Geospatial Data Mining and Knowledge Discovery
  • Programming for Big Data
  • Statistics
  • Multimedia Mining

* Two electives must be selected

Year 2 Semester 4

  • MSc Research Project

Online Year 1: Tuesday and Wednesday 6pm-10pm. Online Year 2: Wednesday and Thursday 6pm-10pm. All classes are recorded 

Apply for this course online at https://www.itb.ie/StudentCategories/parttime.html. The closing date to apply for this course was 7th June 2019. 

My job involves a lot of complex analysis, and because of the practical nature of the course I have learned how to make complex analytics more consumable to a wider audience. As a student, I was really busy, but on projects that were interesting to me. I use the analytics and documentation skills I learned on the course every day.
The course teaches students how to clearly present a problem, and using analytics better understand the problem. This is a key skill in industry as it helps shape better solutions and better products. I have now a broader knowledge base and am better prepared when asking questions around analytics and the desire for more understanding of how a product is used.

The key differentiating factor is this course is that it's delivered remotely, so this made it ideal for me as a working mum. I was able to get an education and all the support I needed without having to sacrifice family time. When I was studying, my husband had to travel, and we have a young family. The remote nature of the course really worked for both my family needs and my educational needs. Even though the course was remote, we still had a great connection online with everyone in the class. When I couldn’t make the lecture, the recordings were uploaded straight away, and I had access to the material the following morning. I would certainly recommend this course

Niambh Scullion
Graduate of Master of Science in Computing (Applied Data Science & Analytics)

TU Code

TBC

Level

NFQ Level 9

Award

Master of Science

Duration

2 years

Course Type

Postgraduate

Mode of Study

Part Time

Method of Delivery

Online

Commencement Date

Week commencing 23/09/2019

Location

Blanchardstown

Fees (EU)

€2,600 per year 

*This course is part-funded by Technology Ireland ICT Skillnet under the Training Networks Programme of Skillnets and by member companies. Skillnets is funded from the National Training Fund through the Department of Education and Skills.

For further information see www.ictskillnet.ie